

DeKalb County Department of Planning & Sustainability

178 Sams Street, Decatur, GA 30030 - (404) 371-2155 Planning and Sustainability | DeKalb County GA

Planning Commission Sketch Plat Hearing Date: December 11, 2024 @ 6:00 P.M

STAFF ANALYSIS

Case No.:	P-Plat #1246866	Agenda # N1				
	Commission District: 3	Super District: 7				
Location/Address:	4127, 4139, 4147, 4149, 4	4163 & 4173 Maplewood Drive				
Parcel ID(s):	15 158 02 005, 15 158 009, 15 158 02 051	02 006, 15 158 02 007, 15 158 02 008, 15 158 02				
Request:	Major subdivision to construct up to 31 single-family detached dwellings.					
Property Owner(s):	Maplewood Mareis, LLC					
Applicant/Agent:	Emily Sidner (Crescent V	iew Engineering, LLC)				
Acreage:	Approx. 8.40 acres					
Existing Land Use:	Vacant					

SUBJECT PROPERTY & ZONING HISTORY

The subject properties consist of approximately 8.40 acres that are currently undeveloped. On November 14, 2023, the subject properties were rezoned, with conditions, from the R-75 (Residential Medium Lot-75) Zoning District to the RSM (Small Lot Residential Mix) Zoning District (Z-23-1246544). The approved conditions, conceptual site plan, and architectural renderings are attached to this analysis.

PROJECT DESCRIPTION

The applicant, Emily Sidner/Crescent View Engineering, LLC, proposes a major subdivision of the subject properties to construct up to 31 single-family detached dwellings at a density of approximately 3.7 units per acre. The proposed density falls under the maximum density threshold that is permitted in the RSM Zoning District.

Improvements are proposed in County Right-of-Way (ROW) adjacent to the development site's frontage along Maplewood Drive, which is classified by the County as a "collector" road. Streetscape improvements include a 10-foot sidewalk and landscape strips with streetlights and street trees. As per the Conditions of Z-23-1246544, a 10-

foot "no-access easement" is provided along with a 20-foot-deep landscape strip and fencing to screen the development site from Maplewood Drive. A single access point (Maple Ridge Way) is proposed off of Maplewood Drive and is to be built to public street standards.

Approximately 21 percent of the development site is reserved for open space, the majority of which consists of enhanced open space in the form of a pocket (dog) park and nature trails in the southern and eastern portions of the site.

A single stormwater detention facility is provided in the southwestern portion of the development site. A tree recompense plan is provided that meets the minimum requirements set forth by the County Arborist. The proposal adequately meets maneuverability requirements for Fire/Rescue and Sanitation vehicles.

Sec. 14-96. - Standards for approval of sketch plats; approved preliminary plats.

(a) The Planning Commission shall not approve a sketch plat unless it is found that:

1) Provisions have been made for a water supply system that is sufficient in terms of quantity, dependability, and quality for purposes of health, emergency, and adequate fire protection for the subdivision proposed;

Water service is to be provided by DeKalb County.

2) If a public sewage system is proposed, adequate provision has been made for such a system and, if other methods of sewage disposal are proposed, that such systems will comply with federal, state, and local laws and regulations;

Sewer service is to be provided by DeKalb County.

3) Adequate areas have been allocated within a subdivision to meet the regulations in this chapter for the long-term collection, management, and treatment of stormwater;

A single underground stormwater detention facility is proposed on-site, which meets the minimum requirements of the *Land Development Code* (Chapter 14).

4) The proposed subdivision is designed to avoid areas of flood plains, watercourses, wetlands, exceptional or specimen trees or woodlands;

The subject property does not appear to be located near any flood plains or state waters, and plans have been reviewed/approved by the County Arborist.

5) No platting of lots within the subdivision will create any non-conforming lots or increase the nonconformity of existing non-conforming lots on property within or adjacent to the subdivision;

Newly created lots are in compliance with applicable lot standards in the RSM Zoning District.

6) If the subdivision abuts a state designed highway, all applicable statutory provisions are followed, including the rules of Georgia Department of Transportation;

Not applicable.

7) The proposed subdivision meets all the requirements of this chapter, <u>Chapter 27</u>, the official comprehensive plan, the official thoroughfare map, and all other standards and regulations adopted by all boards, commissions, agencies, and officials of DeKalb County and all other applicable laws from other, relevant jurisdictions;

Yes.

8) A properly issued certificate of appropriateness, when the subdivision or portions thereof lie within a designated historic area that required such a certificate as may be required by state law or this Code; and

Not applicable.

9) Lot lines have been laid out so as to minimize crossing municipal or county boundaries;

All proposed lots are located in the unincorporated area of DeKalb County.

10)All requirements of section 14-89 and section 14-90 have been fulfilled.

Yes.

STAFF RECOMMENDATION: Approval

The proposal is consistent with the goals of the *Comprehensive Plan*, is in compliance with the Conditions of Z-23-1246544, and is in compliance with all developmental standards of the *Zoning Ordinance*. All other regulatory reviews have been completed and approved (or conditionally approved). Therefore, the Planning and Sustainability Department recommends *Approval* of the submitted Sketch Plat application.

SITE NOTES:

- THE SITE CONTAINS: 366,035 SQ.FT = 8.40 ACRES TOTAL DISTURBED ACREAGE: 372,974 SQ.FT = 7.19 ACRES
- SITE ADDRESS: 4147 MAPLEWOOD DRIVE, DECATUR, 30035
- SURVEY INFORMATION TAKEN FROM SURVEYS PERFORMED BY THOMAS & HUTTON, DATED 5-26-22. 4
- HORIZONTAL DATUM IS NAD83 GEORGIA GRID WEST ZONE. VERTICAL DATUM IS NAVD88.
- NO PART OF THIS SITE IS LOCATED WITHIN A ZONE [A, AE, SHADED ZONE X] AS DEFINED BY F.I.R.M. COMMUNITY PANEL NUMBER 13089C0151 J DATED MAY 16, 2013 FOR DEKALB COUNTY, GEORGIA.
- THERE ARE EXISTING EASEMENTS, STATE WATER BUFFERS, STREAM BUFFERS OR FLOODPLAIN BUFFER THAT APPLY TO THIS PROPERTY.
- TO THE BEST OF OUR KNOWLEDGE, THERE NO CEMETERIES, ARCHITECTURAL, OR ARCHEOLOGICAL LANDMARKS EXIST ON SITE. IN THE EVENT THAT THESE LANDMARKS ARE DISCOVERED DURING CONSTRUCTION, THE ENGINEER MUST BE CONTACTED IMMEDIATELY FOR REVIEW AND AMENDING THE CONSTRUCTION PLANS.
- THE EXISTING UTILITIES SHOWN ON THE PLANS ARE SHOWN FOR THE CONTRACTOR'S CONVENIENCE. THE ENGINEER ASSUMES NO RESPONSIBILITY FOR THE LOCATIONS, SIZES, MATERIALS, OR DEPTH FOR THE UTILITIES SHOWN OR THE UTILITIES WHICH MAY EXIST ON THE SITE BUT ARE NOT SHOWN. THE CONTRACTOR SHALL HAVE THE RESPONSIBILITY TO VERIFY THE LOCATION OF ALL UTILITIES SHOWN ON THE PLANS AND REPORT ANY DISCREPANCIES TO THE ENGINEER OF RECORD. THE CONTRACTOR SHALL ALSO HAVE THE RESPONSIBILITY BEFORE STARTING ANY WORK TO MAKE SUCH EXPLORATIONS AND PROBES NECESSARY TO ASCERTAIN ANY SEWER LINES, WATER SUPPLY LINES, GAS LINES, ELECTRICAL LINES, CABLE LINES, TELEPHONE LINES. OR OTHER UTILITY LINE.
- CONTRACTOR SHALL CONTACT THE UTILITY LOCATOR AS REQUIRED BY GEORGIA LAW AND HAVE ALL UTILITIES MARKED PRIOR TO ANY CONSTRUCTION ACTIVITY. CONTRACTOR WILL HAVE PRIVATE UTILITY LOCATOR LOCATE ALL UTILITIES WITHIN THE CONSTRUCTION LIMITS NOT COVERED BY THE UTILITY PROTECTION CENTER.
- THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER OF ANY DISCREPANCIES OR ERRORS THAT HE 8 MAY DISCOVER IN THESE PLANS.
- 9. CONTRACTOR TO PROVIDE ALL NECESSARY BARRICADES, GUARDS, LIGHTS, AND OTHER INSTALLATIONS REQUIRED TO PROTECT PERSONS AND PROPERTY DURING THE ENTIRE CONSTRUCTION PROCESS.
- ALL CONSTRUCTION MUST CONFORM TO THE APPROPRIATE CITY, COUNTY, AND STATE STANDARDS 10.
- UNDERGROUND UTILITIES SERVING OR CROSSING THE PREMISES MAY EXIST THAT ARE NOT SHOWN. 11. CRESCENT VIEW ENGINEERING IS UNABLE TO CERTIFY TO THE ACCURACY OR COMPLETENESS OF THE UTILITY INFORMATION SHOWN. ALL UNDERGROUND UTILITY LOCATIONS MUST BE FIELD VERIFIED PRIOR TO ANY CONSTRUCTION ACTIVITY BY THE UTILITY PROTECTION CENTER AT 1-800-282-7411 FOR RIGHT OF WAY AREA AND BY A PRIVATE UTILITY LOCATOR FOR UTILITIES NOT LOCATED WITHIN THE RIGHT OF WAY.
- 12. THE CONTRACTOR MUST OBTAIN ADDITIONAL "RIGHT OF WAY" PERMIT FOR ALL NECESSARY WORK DONE IN THE RIGHT OF WAY.
- 13. THIS PLAN WAS PREPARED FOR PERMIT APPROVAL ONLY. ACTUAL CONSTRUCTION SHOULD BE BASED ON STAKING BY A REGISTERED LAND SURVEYOR. THE FOOTPRINT IS BASED ON AN ARCHITECTURAL PLAN BY OTHERS. THE ARCHITECTURAL PLAN SHOULD BE USED FOR HOUSE POSITIONING AND LOCATION

ZONING CONFORMANCE:

SITE ZONING: R-SM ZONING (APPROVAL CASE NO: Z-23-1246544) DENSITY UNITS/ACRE: MINIMUM OPEN SPACE: PROVIDED OPEN SPACE: BUILDING SETBACKS FRONT SETBACK (THOROUGHFARES AND ARTERIALS) FRONT SETBACK (SUB): SIDE SETBACK (INTERIOR LOT): SIDE SETBACK (CORNER LOT): REAR SETBACK (WITHOUT ALLEY):

LOT REQUIREMENTS MINIMUM LOT WIDTH: MINIMUM LOT AREA: MAXIMUM LOT COVERAGE: MINIMUM FLOOR AREA: MAXIMUM HEIGHT OF BUILDING: PROPOSED DENSITY: 3.76 UNITS/ACRE 20% (MIN) 20.83%

20 FT (MIN) / 30FT (MAX) 20 FT (MIN) 3 FT (MIN) WITH 10 FT SEPARATION BETWEEN BUILDINGS SAME AS FRONT 20 FEET (10FT WITH ALLEY)

50 FT (OR 20 FT COTTAGE) 5,000 SF (OR 2,000 SF COTTAGE) 50% 1,200 SF (OR 800 SF COTTAGE) 35 FEET

SKETCH PLAT NOTES:

A HOME OWNERS ASSOCIATION WILL BE ESTABLISHED.

ELECTRICAL SERVICES FOR THE DEVELOPMENT WILL BE UNDERGROUND.

THE TITLE FOR THE DEVELOPMENT WILL BE RECORDED UNDER "MAPLEWOOD MAREIS, LLC".

RECORDED OFF-SITE SEWER EASEMENT REQUIRED PRIOR TO ISSUANCE OF DEVELOPMENT PERMIT.

A 75' TRIBUTARY BUFFER WILL BE MAINTAINED ON ALL STATE WATERS THAT ARE NOT APPROVED FOR A BUFFER ENCROACHMENT VARIANCE BY DEKALB COUNTY OR GA. E.P.D.

SKETCH PLAT APPROVAL DOES NOT CONSTITUTE APPROVAL OF THE STORM DRAINAGE OR SANITARY SEWER SYSTEMS. NO CONSTRUCTION SHALL BEGIN UNTIL CONSTRUCTION PLANS ARE ARE APPROVED AND A DEVELOPMENT PERMIT IS OBTAINED.

THE OWNER OF THE PROPERTY IS RESPONSIBLE FOR COMPLIANCE WITH THE CORPS OF ENGINEERS REQUIREMENTS REGARDING WETLANDS.

NECESSARY BARRICADES, SUFFICIENT LIGHTS, SIGNS AND OTHER TRAFFIC CONTROL METHODS AS MAY BE NECESSARY FOR THE PROTECTION AND SAFETY OF THE PUBLIC SHALL BE PROVIDED AND MAINTAINED THROUGHOUT THE WIDENING OF AND CONSTRUCTION ON DEKALB COUNTY ROADS.

APPROVAL FROM SANITATION DEPARTMENT AT (404) 294-2123- IS REQUIRED FOR DUMPSTER LOCATION AND ACCESSIBILITY.

DEKALB COUNTY SANITATION DEPARTMENT IS RESPONSIBLE FOR GARBAGE AND RECYCLING PICK-UP

SIGNATURE BLOCK:

THIS SKETCH PLAT HAS BEEN SUBMITTED TO AND APPROVED BY THE PLANNING COMMISSION OF DEKALB COUNTY,

ON THIS _____DAY OF 20____

BY: (BY DIRECTOR) PLANNING COMMISSION CHAIRMAN DEKALB COUNTY, GEORGIA

24 HOUR EMERGENCY CONTACT: ALEX CIUCA 404-775-4687/ALEX.CIUCA23@GMAIL.COM PLANS FOR SKETCH PLAT:

MALPEWOOD DRIVE SUBDIVISION 4147 MAPLEWOOD DR **PARCEL ID: 15 158 02 007**

Land Lot 158, 15th District Dekalb County, Georgia, 30035

Vicinity Map

Site Location Map N.T.S.

FEMA Map N.T.S.

NO PART OF THIS SITE IS LOCATED WITHIN A 100-YR FLOOD ZONE OR ZONE [A, AE, SHADED ZONE X] AS DEFINED BY FIRM PANEL NUMBER 13089C0151 J DATED 5/16/2013, FOR DEKALB COUNTY AND INCORPORATED AREAS.

PROPOSED PARCELS

- **31 SINGLE FAMILY HOUSES**
- **1 STORMWATER MANAGEMENT AREA**
- 1 DOG PARK
- **1 POCKET PARK** REMAINING AREAS ARE COMMON AREA

"I CERTIFY UNDER THE PENALTY OF LAW THAT THIS PLAN WAS PREPARED AFTER A SITE VISIT TO THE LOCATIONS DESCRIBED HEREIN BY MYSELF OR MY AUTHORIZED AGENT, UNDER MY DIRECT SUPERVISION"

01-30-24

DATE

REPLACEMENT TREE PLAN

T-2

SUBSTITUTE 2023-0874 (Z-23-1246544) Recommended Conditions 11/13/2023

- 1. No more than thirty-one (31) single-family, detached dwellings shall be constructed in general conformance to the site plan dated 10/18/2023.
- 2. Approval of this rezoning application by the Board of Commissioners has no bearing on the requirements for other regulatory approvals under the authority of the Planning Commission, the Zoning Board of Appeals, or other entity whose decision should be based on the merits of the application under review by each entity.
- 3. A ten-foot no-access easement and a 20-foot-wide landscape strip shall be provided as shown on the site plan, in combination with a six-foot-high decorative fence, or a five-foot-high landscaped berm, to screen the rear view of houses from Maplewood Drive.
- 4. A minimum of 20 percent open space shall be provided. Fifty (50) percent of the provided open space shall be enhanced open space as shown on the site plan. A minimum distance of 30 feet shall be provided between the rear lot lines of Lots 9-13 and the southern property line of the overall development site. Nature trails shall be provided as shown.
- 5. Building elevations shall be in general conformance with the designs included with the application; building materials shall consist of brick, stucco, and/or cementitious siding.

24 HOUR EMERGENCY CONTACT: ALEX CIUCA 404-775-4687	
SKETCH PLAT - AP#1246866	
	Prepared By: CRESCENT VIEW ENGINEERING, LLC: 211 Frasier Street Marietta, GA 30060 678-324-8410 www.crescentvieweng.com
	Prepared For: MAPLEWOOD MAREIS, LLC ALEX CIUCA ALEX CIUCA 404-775-4687 ALEX.CIUCA23@GMAIL.COM
	CONTRACTOR STIPULATION
	CONSTRUCTION PLANS FOR: MAPLEWOOD DRIVE SUBDIVISION 4147 MAPLEWOOD DRIVE LAND LOT 158, 15TH DISTRICT DEKALB COUNTY, GA, 30035 DEKALB COUNTY, GA, 30035
	SHEET NO.

24 HOUR EMERGENCY CONTACT: ALEX CIUCA 404-775-4687 SKETCH PLAT - AP#1246866

_	
_	
_	
_	
<u> </u>	
_	
•	
<u> </u>	
· ·	
· ·	

											
Curve Table											
Curve #	Length	Radius	Delta	Direction							
C1	51.250	127.504	023.0301	N11° 29' 40.80"W							
C3	35.321	72.457	027.9297	N13° 42' 51.85"W							
C6	35.598	77.500	026.3177	S12° 55' 00.44"E							
C8	52.327	77.500	038.6856	N45° 25' 06.23"W							
C9	44.841	77.499	033.1518	N73° 44' 08.62"E							
C10	51.131	77.499	037.8019	N29° 18' 33.16"E							
C11	13.673	77.499	010.1085	N05° 21' 14.54"E							
C13	55.370	77.432	040.9713	S61° 01' 12.20"E							
C14	11.165	75.335	008.4919	N85° 33' 16.41"W							
C16	28.029	22.000	072.9976	S53° 13' 33.43"E							
C17	24.489	127.500	011.0049	S22° 13' 46.60"E							
C18	24.489	127.500	011.0049	S22° 13' 46.60"E							
C21	33.587	22.498	085.5386	N46° 58' 22.75"W							
C22	35.323	22.500	089.9494	S45° 17' 27.09"W							
C23	35.316	22.500	089.9304	S44° 43' 23.42"E							
C24	35.684	22.532	090.7393	N44° 54' 23.60"E							
C27	10.508	117.285	005.1336	N25° 22' 15.78"W							
C28	15.257	77.500	011.2795	S70° 24' 03.29"E							
C32	5.518	77.502	004.0793	N04° 10' 16.70"W							
C33	50.869	78.153	037.2929	S25° 04' 47.40"E							
C34	12.105	77.499	008.9497	N52° 41' 06.00"E							
C35	18.460	77.500	013.6477	N82° 51' 52.32"W							
C39	35.091	72.500	027.7321	S13° 51' 57.70"E							

LOT I.D.	AREA (SQ.FT.)
LOT 1	7992
LOT 2	7159
LOT 3	5195
LOT 4	5232
LOT 5	5268
LOT 6	5305
LOT 7	5431
LOT 8	6734
LOT 9	5453
LOT 10	5448
LOT 11	5442
LOT 12	6682
LOT 13	6080
LOT 14	5581
LOT 15	5222
LOT 16	5221
LOT 17	8050
LOT 18	10357
LOT 19	11558
LOT 20	5896
LOT 21	5894
LOT 22	5894
LOT 23	8928
LOT 24	7091
LOT 25	7096
LOT 26	5501
LOT 27	5496
LOT 28	5501
LOT 29	5497
LOT 30	7095
LOT 31	7099
TOTAL LOT AREA	200398

Vehicle Speed (mph)	Stopping Sight Distance for Left-Turn Maneuver (feet)	Stopping Sight Distance for C and Right-Turn Maneuvers
15	170	145
20	225	195
25	280	240
30	335	290
35	390	335
40	445	385
45	500	430
50	555	480
55	610	530

SKETCH PLAT - AP#1246866

								24	4 H	OUF	REM	IER S	GE Ke	ENC ETC	CY C C H I	ON PL/	AT	CT: - A	ale> P#12	(CIU 468	ICA	104-7	75-46	687			
2 CATCH 3 .87 SW .87 DI 27.77 J	Basin CB A A12.1 IB A1	N 13 2																							Prepared By:	CRESCENT VIEW ENGINEERING, LLC: 211 Frasier Street Marietta, GA 30060	678-324-8410 www.crescentvieweng.com
A13 CATCH 9 82 928.17	H BAS	5IN 8 A12									NIETCHA	RTEOR	0-10 \$	TORM	-VFNT											EIS, LLC	
DI A2 DI A2 DI A3 CI A4 WCB B1 WCB B2 WCB B3 CI B4 WCB B5 WCB B5 UCB B5 DI B7 WCB A6 WCB A10 WCB A12	Area (ac) 0.1 0.05 0.21 0.2 0.24 0.18 0.32 0.27 0.43 0.32 0.43 0.32 0.18 0.25 0.39 0.26 0.31 0.37 0.11	Inlet I Time I (min) (in 5 7 5	Ri Ci /hr) .81 .81 .81 .81 .81 .81 .81 .81 .0 .31 .0 .32 .0 .33 .0 .34 .0 .35 .0 .36 .0 .37 .0 .381 .0	unoff oeff. ((C) 0.3 0.35 0.72 0.8 0.72 0.8 0.72 0.8 0.77 0.67 0.67 0.67 0.62 0.48 0.29 0.64 0.72 0.63 0.64 0.72 0.63 0.63 0.63 0.63 0.63 0.63 0.64 0.72 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63	Q (cfs) 1 0.23 1 0.14 1 1.18 1 1.25 1 1.31 1 0.94 1 1.42 1 1.61 1 1.61 1 1.61 1 1.61 1 1.41 2 2.04 1 1.43 0 1.45 1 94 0 0.42 2	Carry over 0 0 0.08 0	Q Capture (cfs) 0.23 0.22 1.1 1.25 1.31 0.94 1.27 1.31 1.61 1.5 0.9 1.41 2.04 1.28 1.45 1.94 0.42 2.17	Q d Bypas (cf 0 0 0	Image: sign of the section of the	Junct Type I Grate Grate Comb. Curb Curb Curb Curb Curb Curb Curb Curb	Curb C Height Len (in) (6	urb G ngth A ft) (s 3.5 14 12 3.5 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12	Q 10 3 rate Q Area Lu 2 2 2	Brate Image: Construct of the second se	Grate Gu Midth SI (ft) (ft) 2 S 2 S 2 S 2 S 2 S 2 S O O O O O O O O O O O O O O O O O O O	tter Ge ope W /ft) I ag	utter /idth Sir (ft) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Cross ope, Sw (ft/ft) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	Cross L Slope, Sx D (ft/ft) (0.2 0.02	ocal Inlet epr. Depth 2 0.12 2 0.12 2 0.12 2 0.38 2 0.38 2 0.39 2 0.39 2 0.4 2 0.39 2 0.4 2 0.39 2 0.4 2 0.36 2 0.36 2 0.4 2 0.36 2 0.4 2 0.36 2 0.4 2 0.36 2 0.4 2 0.36 2 0.4 2 0.4 2 0.31	Bypass Depth (ft) n/a n/a 0.09 n/a 0 0 0.11 0 0 0 0 0 n/a 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Bypass Gur Spread De (ft) (ft) n/a -0 n/a -0 1.09 0. n/a 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. n/a 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0.	tter Gutte pth Sprea ft) .04 0.65 .05 0.62 21 6.21 19 5.09 22 6.54 23 6.8 22 6.53 23 7.2 03 1.01 23 6.76 23 7.06 19 5.17 21 6.23 23 7.14 14 2.57	er Bypass id Line No. Sag Sag Sag Sag Sag Sag Sag 10 Sag 12 Sag	Prepared For:	MAPLEWOOD MARI	ALEX.CIUCA23@GMAIL.COM
N A12.1 WCB A13 WCB B1.1 WCB B1.2 DI B1.3 WCB A6.1	1.06 0.2 0.2 0.18 0.45 0.23	10 6 5 7 5 7 5 7 5 7 5 7 5 7 5 7	.01 (.81 (.81 (.81 (.81 (.81 (0.34 0.75 0.68 0.57 0.59 0.63	2.17 1.17 1.06 0.8 2.07 1.13		2.17 1.17 1.06 0.8 2.07 1.13			Grate Curb Curb Curb Grate Curb	6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	4 12 14 12 12 12 12 12	10.4 7.66 : OR Q-	20.2 13.83 25 STO	2 S 0 S 0 2 S 0 RM EVEI	ag .02 ag .01 ag .01 .01	1.5 1.5 1.5 1.5 1.5 1.5	0.08 0.08 0.08 0.08 0.08 0.08 0.08	0.2 0.02 0.02 0.02 0.2 0.02	2 0.19 2 0.36 2 0.35 2 0.36 2 0.23 2 0.38	n/a 0 n/a 0 n/a 0	n/a 0. 0 0. n/a 0. 0 0. n/a 0. 0 0.	03 1.01 19 5.18 18 4.57 19 5.09 06 1.2 21 6.08	Sag 21 Sag 24 Sag 3 15	CHARTS	IONS Y COMMENTS	Y COMMENTS Y COMMENTS
Line To 1 Or 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 7 11 7 12 7	b Line utfall 1 2 3 4 5 6 7 8 9 9 10 11	Line Length (ft) 21.07 32.13 56.38 33.27 37.17 63.57 90 52.05 42.12 29.79 108.515 106.565	Incr. Area (ac) 0 0.1 0.05 0.21 0.2 0.24 0.18 0 0.32 0.32 0.27 0.43 0.86	Iota Area (ac) 7.05 7.05 6.95 6.9 3.51 2.48 2.24 2.06 1.74 0.86	Runoff Coeff. (C) 0 0.3 0.35 0.72 0.8 0.72 0.67 0.67 0.57 0.62 0.48 0.29	Incr C x A 0 0.03 0.02 0.15 0.16 0.17 0.12 0 0.18 0.17 0.21 0.21	Iotal C x A 3.82 3.82 3.79 3.77 1.87 1.21 1.04 0.92 0.74 0.25	Iniet Time (min) 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(min) 14.8 14.6 14.4 14.2 14 13.8 13.4 13.2 13 12.8 11.8 10	Rnfal Int (in/hr) 5.9 5.9 6 6 6.1 6.1 6.1 6.2 6.3 6.3 6.3 6.3 6.6 7.1	Iotal Runoff (cfs) 22.53 22.65 22.69 22.72 11.35 7.39 6.45 5.76 5.8 4.68 3.01 1.77	Adni Flow (cfs) 0	I ota Flow (cfs) 22.5 22.7 23.01 1.77	 Capa Capa Full (cfs) 52.2 50.9 50.9 57.8 23.4 14.2 13.6 13.4 12.3 18.6 15.0 17.6 	 Veloc (ft/s) 3.19 3.21 3.27 4.8 5.95 5.43 5.79 5.18 5.44 4.94 5.3.77 2.3.19 	Pipe Size (in) 36 36 36 36 24 18 18 18 18 18 18 18 18 18	Pipe Slopu 0.52 0.5 0.5 0.5 1.08 1.57 1.43 1.49 2.69 1.75 2.82	Elev Dn (ft) 921.3 921.4 921.4 921.4 921.4 921.4 921.4 921.4 921.4 921.4 921.4 922.4 925.0 926.4 925.0 926.4 927.5 928 928 930	Inv Elev Up (ft) 2 921.31 1 921.47 7 921.75 5 922.9 924 925.5 5 926.33 3 926.93 1 927.9 929.9 929.9 929.9 929.9	HGLDn (ft) 924.33 924.37 924.48 924.61 923.63 924.11 925.05 926.48 927.26 927.26 927.86 928.73 930.56	HGLUp (ft) 924.35 924.4 924.53 923.63 923.63 924.11 925.05 926.48 927.26 927.26 927.86 927.86 928.73 930.56 933.5	Grnd/ Rim 928.82 930 931.19 932.37 933.55 933.96 934.38 935.17 935.21 935.21 935.24 935.24 935.35	Grnd/ Rim (ft) 930 931.19 932.37 933.55 933.96 934.38 935.17 935.21 935.21 935.24 935.23 937.43 938.51	Line ID A1 A2-A1 A3-A2 A4-A3 B1-A4 B2-B1 B3-B2 B3-B3 B3-B3 B4-B3.5 B5-B4 B6-B5 B7-B6	STORM PROFILES + (DATE 01-30-24 REVIS SCALE AS SHOWN 08-29-24 COUNT	DRAWN JS 09-19-24 COUNT CHECKED GHB 11-7-24 COUNT
13 14 15 16 17 18 19 20 21 22 23 24	10 4 14 15 16 17 18 19 20 21 5	30.097 66.57 132.61 54.111 30.07 59.81 30.04 45.41 97.86 19.089 30.014 30.08	0.18 0.25 0.39 0.26 0.31 0.37 0 0.11 1.06 0.2 0.2	0.18 3.18 3.18 2.7 2.31 2.05 1.74 1.37 1.37 1.06 0.2 0.83	0.64 0.72 0.67 0.63 0.63 0.64 0.67 0.67 0.49 0.49 0.34 0.75 0.68	0.12 0 0.18 0.26 0.16 0.19 0.25 0 0 0.05 0.36 0.15 0.14	0.12 1.75 1.75 1.42 1.16 1 0.81 0.56 0.36 0.15 0.5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 13.1 12.1 11.8 11.7 11.4 11.3 10.9 10.2 10 5 5.9	9.3 6.3 6.5 6.6 6.6 6.7 6.7 6.7 6.8 7 7.1 9.3 8.8	1.07 10.97 11.38 9.37 7.69 6.67 5.47 3.85 3.97 2.56 1.39 4.43	0 0	1.07 11 11.4 9.37 7.69 6.67 5.47 3.85 3.97 2.56 1.39 4.43	19.1/2 41.0/2 41.0/2 24.43 11.3/2	4 4.4 4 4.12 7 5.71 8 5.55 6 5.94 9 5.42 7 4.94 2 4.19 8 4.91 8 3.62 7 2.52 6 3.87 6 3.87	18 30 24 18 18 18 18 18 18 18 18 18 18	3.32 1.01 1 1 1 1 1 1 1 0.99 1 1 1 1 1 2.99	929 921.9 922.6 924.7 924.7 925.1 925.8 926.7 926.7 926.7 927.8 927.8 927.8	930 922.57 7 924 1 924.64 4 925.74 4 926.14 4 926.69 9 927.77 7 928.06 7 928.17 923.9 923.9	929.24 923.63 923.68 925.13 925.73 926.11 926.74 927.04 927.04 927.44 928.53 928.53 928.53	930.39 923.68 925.13 925.73 926.11 926.74 927.04 927.04 927.44 928.53 928.67 928.61 928.71	936.35 933.55 934.1 933.35 932.81 932.83 932.83 932.83 933.77 933.77 933 933.93 933.96	936.38 934.1 933.35 932.81 932.83 934.27 933.77 933 934.71 932.99 933.96	B5.1-B5 A5-A4 A6-A5 A7-A6 A8-A7 A9-A8 A10-A9 A11-A12 A12-A11 A12.1-A12 A13-A12 B1.1-B1	C. E. O. R. C.	COLORESCONTES	CE H. BAL
26 27 Line To 1 Ou 2	25 15 Line utfall	25.147 30.26 Line Length (ft) 21.07 32.13	0.13 0.45 0.23 Incr. Area (ac) 0 0.1	0.03 0.45 0.23 Tota Area (ac) 7.05 7.05	I Runoff Coeff. (C) 0.3	0.1 0.27 0.14	0.27 0.14 Total C x A 3.82 3.82	5 5 1nlet Time (min) 0 5	5 5 7 Time Conc (min) 13.9 13.8	9.3 9.3 9.3 Rnfal Int (in/hr) 7.5 7.6	2.46 1.34 PIPE CH Total Runoff (cfs) 28.82 28.95	ART FC Adnl Flow (cfs) 0	2.46 1.34 DR Q-1 Tota Flow (cfs) 28.8 29	20.94 17.03 17.03 100 STC 1 Capa 7 Full 6 (cfs) 52.2 50.93	4 3.77 8 2.1 DRM EVE Veloc) (ft/s) 2 4.08 8 4.1	13 18 18 NT Pipe Size (in) 36 36	2.5 3.98 2.64 Pipe Slope (%) 0.52 0.5	924. 924. 924. 924. Elev Dn (ft) 921.3	927 927 924.9 Inv Elev Up (ft) 2 921.31 1 921.47	925.13 HGLDn (ft) 925.2	927.59 925.33 HGLUp (ft) 925.48 925.57	933.35 933.35 Grnd/ Rim (ft) 928.82 930	933 933.31 Grnd/ Rim (ft) 930 931.19	Line ID A1 A2-A1	LANS FOR:		GA, 30035
2 3 4 5 6 7 8 9 10 11 12 13 14	2 3 4 5 6 7 8 9 10 11 10 10 4	56.38 33.27 37.17 63.57 90 52.05 42.12 29.79 108.515 106.565 30.097 66.57	0.05 0.21 0.2 0.24 0.18 0 0.32 0.27 0.43 0.86 0.18 0.18 0	7.05 6.95 6.9 3.51 2.48 2.24 2.06 1.74 1.29 0.86 0.18 3.18	0.3 0.35 0.72 0.8 0.7 0.67 0.67 0.57 0.62 0.48 0.29 0.64 0.64	0.03 0.02 0.15 0.16 0.17 0.12 0 0.18 0.17 0.21 0.21 0.25 0.12 0.12	3.79 3.77 1.87 1.21 1.04 0.92 0.92 0.74 0.46 0.25 0.12 1.75	5 5 5 5 5 0 5 5 5 5 5 5 5 10 5 5 5 5 5 5	13.3 13.4 13.3 13.1 12.8 12.5 12.4 12.2 11.4 10 5 12.5	7.6 7.7 7.7 7.8 7.9 7.9 7.9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7.9	28.95 28.96 28.97 14.46 9.4 8.19 7.3 7.34 5.92 3.78 2.2 1.33 13.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	29 29 14.5 9.4 8.19 7.3 7.34 5.92 3.78 2.2 1.33 13 9	50.9. 50.9. 57.8 23.4 14.2 13.6 13.4 12.3 18.6 15.0 17.6 19.1 41.1	4.1 4.1 4.1 6 4.6 7 5.32 2 4.63 7 4.13 9 4.16 4 3.37 5 3.23 2 3.35 4 2.55 4 2.83	36 36 24 18 18 18 18 18 18 18 18 18 18 30	0.5 0.5 0.75 1.08 1.57 1.43 1.4 1.19 2.69 1.75 2.82 3.32 1.01	921.3 921.4 921.4 921.8 922.1 923 924.2 925.0 926.4 927.1 928 927 928 930 929	2 321.47 7 921.75 5 922.9 924 924 1 925.5 5 926.33 3 926.93 1 927.9 929.9 933 930 930 922.57 922.57	925.32 925.7 925.93 926.48 927.13 927.78 928.52 928.77 929.28 929.62 930.64 929.62 926.48	925.87 925.99 926.63 927.56 928.25 928.73 928.95 929.35 929.35 930.64 933.56 930.43 926.56	931.19 932.37 933.55 933.96 934.38 935.17 935.21 935.24 936.35 937.43 936.35 933.55	932.37 933.55 933.96 934.38 935.17 935.21 935.24 936.35 937.43 938.51 936.38 934.1	A3-A2 A4-A3 B1-A4 B2-B1 B3-B2 B3.5-B3 B4-B3.5 B5-B4 B6-B5 B7-B6 B5.1-B5 A5-A4	CONSTRUCTION PL	4147 MAPLEWO LAND LOT 158, 15TH	DEKALB COUNTY,
1-4 15 16 17 18 19 20 21 22 23 24 25 26	- 14 15 16 17 18 19 20 21 21 5 24 25	132.61 54.111 30.07 59.81 30.04 45.41 97.86 19.089 30.014 30.08 65.574 25.147	0.25 0.39 0.26 0.31 0.37 0 0.11 1.06 0.2 0.2 0.18 0.45	3.18 3.18 2.7 2.31 2.05 1.74 1.37 1.37 0.2 0.83 0.63 0.45	0.72 0.67 0.63 0.63 0.63 0.63 0.64 0.67 0.67 0.63 0.63 0.63 0.63 0.64 0.67 0.49 0.34 0.75 0.68 0.57 0.59	0.18 0.26 0.16 0.19 0.25 0 0.36 0.15 0.14 0.1 0.27	1.75 1.42 1.16 1 0.81 0.56 0.36 0.36 0.15 0.5 0.37 0.27	5 5 5 5 5 5 5 10 5 5 5 5 5 5 5 5 5 5 5 5	11.7 11.5 11.4 11.2 11 10.8 10.2 10 5 5.7 5.2 5.2 5	7.9 8.2 8.3 8.3 8.4 8.5 8.7 8.8 11.6 11.1 11.4 11.6	14.32 11.78 9.65 8.36 6.84 4.81 4.93 3.18 1.73 5.57 4.19 3.07	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11.3 14.3 11.8 9.65 8.36 6.84 4.81 4.93 3.18 1.73 5.57 4.19 3.07	41.0 41.0 24.43 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 10.43 11.3 11.3 12.5 13.5 10.43 17.83 20.9	2.83 7 2.92 8 3.75 6 5.46 9 4.73 7 3.87 2 2.72 8 2.79 8 1.8 7 0.98 6 3.15 8 2.37 4 2.89	30 30 24 18 18 18 18 18 18 18 18 18 18 18 18	101 1 1 1 1 1 1 1 1 1 1 1 1 1	922.6 922.6 924.7 925.1 925.8 925.8 926.7 927.8 927.8 927.8 927.8 927.8 927.8 927.8 927.8 927.8 927.8 927.8 927.8	7 924 1 924.64 4 925.04 4 925.74 4 926.14 4 926.69 9 927.77 7 928.06 7 928.17 925.9 925.9 925.9 927.77	926.65 927.01 927.46 928.89 929.32 929.94 929.94 929.94 927.13 927.44 927.45	926.80 926.81 927.13 927.68 928.7 929 929.4 929.67 929.96 929.95 929.95 927.21 927.54 927.67	933.35 932.81 932.83 932.83 934.27 933.77 933.77 933 933.96 933.96 933.96	933.35 932.81 932.8 932.8 932.8 934.27 933.77 933 934.71 932.99 933.96 934.4 933.9	A6-A5 A7-A6 A8-A7 A9-A8 A10-A9 A11-A12 A12-A11 A12.1-A12 A13-A12 B1.1-B1 B1.2-B1.1 B1.3-B1.2	CVE PI ; SHE	# <u>21-</u> EET NC -2.	³⁰³). 1

Grading Notes:

- PHASE 1 EROSION CONTROL DEVICES MUST BE INSTALLED PRIOR TO ANY CONSTRUCTION
- SEDIMENT BASINS MUST BE CONSTRUCTED PRIOR TO ANY OTHER WORK. DETENTION & SEDIMENT BASINS MUST BE CLEANED OF ALL SILT AND SEDIMENT UPON COMPLETION AND ESTABLISHEMNT OF PERMANENT VEGETATION.
- AFTER SITE CLEARING AND PREPARATION, CONTRACTOR SHALL HAVE A GEOTECHNICAL ENGINEER EVALUATE THE EXPOSED SUBGRADE. THIS EVALUATION SHOULD INCLUDE PROOF ROLLING OF SUBGRADE SOILS TO VERIFY THAT THE SUBGRADE IS OF SUFFICIENT COMPACTION AND MATERIAL FOR PLACEMENT OF FILL TO BEGIN. IF REMEDIAL WORK IS REQUIRED. CONTRACTOR MUST OBTAIN APPROVAL FROM THE OWNER BEFORE PROCEEDING.
- CONTRACTOR SHALL COORDINATE ALL EARTHWORK OPERATION WITH A GEOTECHNICAL ENGINEER. THIS ENGINEER SHALL BE RESPONSIBLE FOR MONITORING AND SUPERVISING ALL EXCAVATION AND PLACEMENT OF FILL MATERIALS FOR THE SITE. ALL FILL MUST BE TESTED FOR COMPACTION AND QUALITY DURING THE GRADING OPERATION. PLACE FILL MATERIALS ON CONTINUOUS LAYERS AND COMPACT IN ACCORDANCE WITH ASTM D698. FILL MATERIAL MUST BE CLEAN INORGANIC NATURAL SOIL. FILLS OF OVER 5' OR LOCATED IN NEW BUILDING OR PARKING AREAS MUST BE SUPERVISED BY A GEOTECHNICAL ENGINEER. SUPERVISED BY A GEOTECHNICAL ENGINEER.

COMPACTION REQUIREMENTS USING STD PROCTOR COMPACTION TEST ASTM D698 (%=MAX. DENSITY AT OPTIMUM MOISTURE CONTENT)

UNPAVED AREAS; TOP 6 INCHES OF SUBGRADE AND SUBSEQUENT LIFTS / 90% SPT

PAVED AREAS: 95% SPT EXCEPT FOR TOP ONE FOOT WHICH WILL BE COMPACTED 98% OF SOIL'S MAX. DRY DENSITY EXTERIOR RAMPS/STEPS: 95% SPT

BUILDING. SLABS: 98% OF SOIL'S MAX. DRY DENSITY FILL WALLS: 95% SPT

COMPACTION ZONE FOR THESE AREAS SHALL INCLUDE A BEARING PLANE OF 1:1 FOR FILL AREAS WHICH SHALL EXTEND TO APPROVED SUBGRADE. COMPACTION REQUIREMENTS UNDER CURBING IS CONSIDERED UNDER PAVED AREAS REQUIREMENTS.

- ALL GRADES SLOPE AWAY FROM BUILDING A MINIMUM OF 3" IN 10 FT. ADDITIONAL POSITIVE DRAINAGE WILL BE REQUIRED FOR BUILDINGS, WHEN BUILDINGS ARE LOCATED WITHIN 20 FEET OF AN UPWARD SLOPE.
- EXCAVATION AND TRENCHES MUST BE CUT SUFFICIENTLY WIDE TO ENABLE INSTALLATION AND ALLOW INSPECTION. ALL CONSTRUCTION AND SAFETY REGULATIONS MUST BE FOLLOWED AT ALL TIMES MEETING APPLICABLE COUNTY, STATE AND FEDERAL CONSTRUCTION SAFETY STANDARDS.
- DISCOVERY OF UNSUITABLE SOILS OR ROCK MUST BE IMMEDIATELY REPORTED TO THE OWNER AND ENGINEER. ALL EARTHWORK MUST NOT PROCEED AT THAT POINT UNTIL OWNER RELEASES THE CONTRACTOR TO PROCEED.
- MAXIMUM GRADED SLOPE ALLOWED 3H: 1V.
- CONTRACTOR MUST HAVE GEOTECHNICAL ENGINEER OBSERVE AND APPROVE THE PROOF ROLLING OF ADDITIONAL PARKING AND DRIVE AREAS BEFORE AGGREGATE BASE COURSE IS APPLIED AND ALSO BEFORE THE ASPHALT OR CONCRETE IS APPLIED.
- 10. PRIOR TO INSTALLATION OF STORM OR SANITARY SEWER, CONTRACTOR SHALL EXCAVATE, VERIFY, AND CALCULATE ALL CROSSINGS AND INFORM OWNER AND THE ENGINEER OF ANY CONFLICTS PRIOR TO CONSTRUCTION. THE ENGINEER WILL BE HELD HARMLESS IN THE EVENT THE ENGINEER IS NOT NOTIFIED OF DESIGN CONFLICTS.
- CONNECT ALL DOWNSPOUTS WITH DOWNSPOUT BOOT TO ROOF DRAIN PIPING. ROOF STORM DRAIN SHALL BE A SOLID PVC SCH 40 WITH A MIN. 1' FOOT COVER. ROOF DRAIN SYSTEM SHALL BE A MIN. OF 5' AWAY FROM THE EXT. WALL AND SLOPED AT A MIN. OF 2.0% FROM ROOF DOWNSPOUTS TO THE STORM SEWER STRUCTURE. ROOF DRAINS MUST HAVE CLEANOUTS AT ALL BENDS.
- 12. ALL SLOPES AND AREAS TO BE LANDSCAPED OR GRASSED SHALL BE GRADED SMOOTH AND FOUR INCHES OF TOPSOIL APPLIED. THE AREA SHALL THEN BE SEEDED, FERTILIZED, MULCHED, WATERED AND MAINTAINED UNTIL HARDY GRASS GROWTH IS ESTABLISHED. NOTE USE OF TOPSOIL DOES NOT CHANGE FINISH GRADE CONTOURS.
- 13. THE CONTRACTOR IS SPECIFICALLY CAUTIONED THAT THE LOCATION OF UTILITIES AND/OR ELEVATION OF EXISTING UTILITIES AS SHOWN ON THESE PLANS ARE BASED ON RECORDS PROVIDED TO THE ENGINEER. INFORMATION SHOWN IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE CONTRACTOR MUST CALL THE APPROPRIATE UTILITY COMPANY AT LEAST 48 HOURS BEFORE ANY ANY EXCAVATION TO REQUEST EXACT FIELD LOCATION OF UTILITIES.
- 14. CONTRACTOR SHALL FOLLOW ALL APPLICABLE SAFETY AND CONSTRUCTION PROCEDURES, ORDINANCES, CODES, AND STANDARDS.
- 15. CONTRACTOR SHALL OBSERVE, PROTECT, AND PRESERVE ALL AREAS SHOWN TO BE PROTECTED SUCH AS TREE PROTECTED AREAS, UNDISTURBED BUFFERS, WETLANDS, STREAMS, STREAM BUFFERS, CEMETERIES, STRUCTURES TO REMAIN, ETC. CONTRACTOR SHALL BE RESPONSIBLE FOR REPAIRS, DAMAGES, FINES, AND PENALTIES ASSOCIATED WITH FAILING TO PROTECT PROTECTED AREAS.
- 16. UNDERPIN ANY ADJACENT WALL OR STRUCTURES WHICH MAY BE DAMAGED BY EXCAVATION WORK. COORDINATE UNDERPINNING WITH PROJECT STRUCTURAL ENGINEER.
- 17. CONTRACTOR SHALL PROVIDE TEMPORARY DIVERSION DEVICES FOR OFFSITE DRAINAGE, ONSITE DRAINAGE, EXISTING STORM PIPING AND ROOF DRAINAGE AS NECESSARY TO CONTROL STORM WATER RUNOFF DURING CONSTRUCTION.
- 18. CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING ALL EARTHWORK AND GRADING OPERATIONS FROM GRADING, SEDIMENTATION, OR DAMAGE DURING CONSTRUCTION. REPAIR OR REPLACEMENT OF EARTHWORK SHALL BE THE CONTRACTOR'S RESPONSIBILITY AT NO ADDITIONAL COST TO THE OWNER. REMOVING AND CLEANING UP SEDIMENT ACCUMULATIONS SHALL BE AT NO ADDITIONAL COST TO THE OWNER.
- 19. AT THE END OF EACH DAY. AREAS FILLED THAT DAY MUST BE SEALED COMPLETELY BY COVERAGES BY ROLLING WITH A LOADED EARTH MOVING SCRAPER, DUMP TRUCK OR LARGE RUBBER TIRED ROLLER. 20. ROOF ROLL COMPACTED FILL SURFACES UNDER SLABS-ON-GRADE, PAVERS, AND PAVING IMMEDIATELY BEFORE THESE STRUCTURAL SURFACES ARE PLACED. THE SOILS ENGINEER SHALL WITNESS AND APPROVE ALL SUBGRADES BEFORE STRUCTURAL SURFACES ARE PLACED.
- CONTRACTOR SHALL PROVIDE ALL EXCAVATING, FILLING, BACKFILLING, IMPORTING, EXPORTING, AND GRADING REQUIRED TO BRING ENTIRE PROJECT TO THE FINAL GRADES AND ELEVATIONS SHOWN IN THE DESIGN DOCUMENTS.
- 22. THE DEPARTMENT OF TRANSPORTATION, STATE OF GEORGIA STANDARD "PIPE CULVERTS" NUMBER 1030D, LATEST EDITION SHALL BE USED IN DETERMINING THE CLASS OF REINFORCED CONCRETE PIPE OR GUAGE OF CORRUGATED STEEL PIPE OR TYPE 2 CORRUGATED ALUMINUM PIPE UNDER FILL AND THE METHOD OF BACKFILLING.
- 23. FIELD JOINTS FOR CORRUGATED PIPE SHALL BE MADE WITH BANDS OF THE SAME BASE METAL AND COATING AS THE CORRUGATED PIPE. BANDS SHALL BE OF THE HUGGER TYPE, DESIGNED TO FULLY ENGAGE AT LEAST ONE ANNULAR CORRUGATION AT THE END OF EACH CORRUGATED PIPE AROUND ITS ENTIRE CIRCUMFERENCE. MINIMUM BAND WIDTH SHALL EQUAL THE CENTERLINE LENGTH OF FOUR (4) ANNULAR CORRUGATIONS. BANDS SHALL CONFORM TO CURRENT ASTM/ AASHTO INDUSTRY STANDARDS AS TO SECURING BOLTS, THEIR NUMBER AND PLACEMENT.
- 24. CONCRETE PIPE SECTIONS MAY BE JOINED WITH BITUMINOUS PLASTIC CEMENT JOINTS, RUBBER-TYPE GASKET JOINTS, O-RING GASKET JOINTS OR PRE-FORMED PLASTIC GASKET JOINTS. IN BITUMINOUS PLASTIC CEMENT JOINTS, THE ANNULAR SPACE SHALL BE FILLED WITH JOINT MATERIAL, AND THE INSIDE OF EACH JOINT WIPED SMOOTH. RUBBER-TYPE, O-RING, AND PRE-FORMED PLASTIC GASKET JOINTS SHALL BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS.
- 25. ALL CATCH BASINS. DROP INLETS OR OTHER DRAINAGE STRUCTURES SHALL COMPLY WITH THE LATEST STANDARDS APPROVED AND PROMULGATED BY THE GEORGIA DEPARTMENT OF TRANSPORTATION IN "STANDARDS SPECIFICATIONS FOR CONSTRUCTION OR ROADS AND BRIDGES", LATEST EDITION.
- 26. ALL ORGANICS AND TOP SOIL SHALL BE REMOVED FROM THE ENTIRE FOOTPRINT OF THE BUILDING.
- 27. FOR ASCMP STORM PIPE BENEATH PAVED SURFACES, PROVIDE #57 STONE BEDDING UP TO THE SPRING LINE.
- 28. ALL STORMWATER INFRASTRUCTURE ON THIS SITE (OUT OF THE R/W) ARE PRIVATELY OWNED, AND ANY MAINTENANCE OR REPLACEMENT IS THE OWNER'S RESPONSIBILITY.
- 29. ALL SITE WALLS ARE TO BE DESIGN/BUILT BY THE CONTRACTOR. THE ENGINEER OF RECORD FOR THE SITE WALLS SHALL DESIGN THE DRAINAGE SYSTEM REQUIRED TO REMOVE POTENTIAL GROUND WATER FROM BEHIND THE WALLS. NO WALL DRAINAGE SYSTEMS ARE SHOWN ON THESE DRAWINGS. SHOP DRAWINGS SHALL BE SUBMITTED TO THE OWNER FOR REVIEW OF THE PROPOSED WALL DRAINAGE SYSTEM.

	FRO	NT
-		

35 FEET JACK & BORE 8" DIP WATER MAIN WITH 16" STEEL CASING TO EXISTING WATER LINE. BORE WITHIN THE VICINITY OF THE T BEND © EXISTING WATER MAIN IN THE PRESENCE OF AN INSPECTOR.

FIRE NOTES:

- 1. THE WATER SUPPLY FOR THE PROPOSED DEVELOPMENT SHALL BE TESTED IN A MANNER THAT WILL VERIFY THAT IT IS CAPABLE OF PROVIDING THE REQUIRED FIRE FLOW. THE DEKALB COUNTY CODE OFFICIAL SHALL BE NOTIFIED PRIOR TO THE WATER SUPPLY TEST. WATER SUPPLY TESTS SHALL BE WITNESSED BY THE DEKALB COUNTY CODE OFFICIAL OR APPROVED DOCUMENTATION OF THE TEST SHALL BE PROVIDED TO THE DEKALB COUNTY CODE OFFICIAL PRIOR TO FINAL APPROVAL OF THE WATER SUPPLY SYSTEM. [2019 NFPA 24 SECTION 5.1.2 AND 2018 IFC 507.4].
- 2. THE FIRE-FLOW CALCULATION AREA SHALL BE THE TOTAL FLOOR AREA OF ALL FLOOR LEVELS WITHIN THE EXTERIOR WALLS, AND UNDER THE HORIZONTAL PROJECTIONS OF THE ROOF OF A BUILDING, EXCEPT AS MODIFIED IN SECTION B104.3. 2018 IFC SECTIONS B104.12 [SEE ALSO SECTION B105] (3) FIRE-FLOW REQUIREMENTS FOR BUILDINGS OR PORTIONS OF BUILDINGS AND FACILITIES SHALL BE DETERMINED BY AN APPROVED METHOD. [IFC 507.3].

SANITARY SEWER / WATER ACCESS NOTES:

- WATER & SEWER ACCESS FEES NEED TO BE PAID UNDER THE FOLLOWING CIRCUMSTANCES: NEW CONSTRUCTION, REDEVELOPMENT, ADDITIONS, CHANGE OF USE, ETC. THESE FEES ARE TO BE PAID AT 330W. PONCE DE LEON AVE, 2ND FLOOR. FAILURE TO SETTLE THESE FEES WILL RESULT IN DELAY FOR OBTAINING WATER AND SEWER PLAN APPROVAL AS WELL AS CERTIFICATE OF OCCUPANCY /COMPLETION. CALL 404-371-4918 FOR FEE CALCULATIONS OR ANY QUESTIONS.
- 2. FOR SEWER ACCESS FEES CONTACT WATER/SEWER ENGINEER AT 404-371-4918
- 3. THRUST BLOCKS ARE REQUIRED WHERE EVER PIPE CHANGES DIRECTION (TEES, BENDS, ETC.)
- 4. PROVIDE EASEMENT PLAT AND DEED FOR REVIEW FOR ALL SANITARY SEWER AND WATER EASEMENTS. (AFTER CONSTRUCTION AND WITH AS-BUILTS)
- 5. GRAVITY SEWER LINE MATERIAL SHALL BE PVC (SDR35) OR DIP (CLASS 350).
- 6. SEWER LATERALS OUTSIDES OF BUILDING REQUIRE SEPARATE PLUMBING PERMIT.

EXISTING LEGEND

— — —1150— — —	EXISTING CONTOUR
	PROPERTY LINE
S	SANITARY SEWER LINE
——Е——Е——Е———Е	OVERHEAD POWER LINE
W W	WATER LINE
x	FENCELINE
	SANITARY SEWER MANHOLE
~~~)	POWER POLE
$\bigcirc$	LIGHT POLE
÷.	FIRE HYDRANT

### PROPOSED LEGEND

——	CONTOUR
	STORMWATER LINE
	LIMIT OF DISTURBANCE
	SANITARY SEWER PIPING
w w	WATER LINE
S	SANITARY SEWER MANHOLE
Ο	CLEANOUT
WM	WATER METER
$\mathbf{X}$	WATER VAULT
<u></u> =:●	FIRE HYDRANT ASSEMBLY
ÞÞ	TAPPING SLEEVE + REDUCER

![](_page_14_Figure_16.jpeg)

Call before you dig.

SEE SHEET C-3.1 FOR DEKALB COUNTY & UTILITY NOTES

![](_page_14_Figure_18.jpeg)

### Utility Notes:

- 1. ALL CONSTRUCTION TO CONFORM TO THE DEKALB COUNTY PUBLIC UTILITIES (WATER DIVISION) SPECIFICATIONS AND IN ACCORDANCE WITH UTILITY HAVING JURISDICTION STANDARD & ORDINANCE.
- 2. SEWER PIPE SHALL HAVE GRAVEL BEDDING.
- 3. TRANSITION JOINTS BETWEEN SEWER PIPES OF DIFFERENT MATERIALS SHALL BE ACCOMPLISHED BY THE USE OF ADAPTERS. CONCRETE COLLARS ARE NOT ACCEPTABLE.
- 4. SANITARY SEWER PIPE SHALL BE ASTM D3034, RATED SDR 35 WITH INTEGRAL BELL, BELL & SPIGOT TYPE JOINTS (WITH RUBBER), OR DUCTILE IRON (D.I.) PIPE (CLASS 52) WITH PUSH-ON OR MECHANICAL JOINTS UNLESS OTHERWISE NOTED.
- 5. PRIOR TO THE CONSTRUCTION OF OR CONNECTION TO ANY STORM DRAIN, SANITARY SEWER, WATER MAIN OR ANY OF THE DRY UTILITIES. THE CONTRACTOR SHALL EXCAVATE, VERIFY AND CALCULATE ALL POINTS OF CONNECTION AND ALL UTILITY CROSSINGS AND INFORM ENGINEER AND THE OWNER/DEVELOPER OF ANY CONFLICT OR REQUIRED DEVIATIONS FROM THE PLAN. NOTIFICATION SHALL BE MADE A MINIMUM OF 48 HOURS PRIOR TO CONSTRUCTION. ENGINEER AND OWNER SHALL BE HELD HARMLESS IN THE EVENT THAT THE CONTRACTOR FAILS TO MAKE SUCH NOTIFICATION.
- 6. CONTRACTOR SHALL COORDINATE INSTALLATION OF WATER SERVICE WITH GOVERNING JURISDICTION.
- 7. CONTRACTOR IS RESPONSIBLE FOR REPAIRS OF DAMAGE TO ANY EXISTING UTILITY DURING CONSTRUCTION AT NO COSTS TO THE OWNER.
- 8. CONTRACTOR SHALL COMPLY TO THE FULLEST EXTENT WITH THE LATEST STANDARDS OF OSHA DIRECTIVES OR ANY OTHER AGENCY HAVING JURISDICTION FOR EXCAVATION AND TRENCHING PROCEDURES. THE CONTRACTOR SHALL SUPPORT SYSTEMS, SLOPING, BENCHING, AND OTHER MEANS OF PROTECTION. THIS TO INCLUDE, BUT IS NOT LIMITED TO ACCESS AND EGRESS FROM ALL EXCAVATION AND TRENCHING. CONTRACTOR IS RESPONSIBLE TO COMPLY WITH PERFORMANCE CRITERIA FOR OSHA.
- 9. CONTRACTOR TO KEEP EXISTING UTILITIES ACTIVE UNTIL NEW LINE IS CONSTRUCTED AND SWITCHOVER OCCURS.
- 10. THE SITE CONTRACTOR SHALL COORDINATE SERVICE ROUTING OF ALL GAS, TELEPHONE, AND ELECTRICAL LINES WITH THE APPROPRIATE UTILITY COMPANY. ALL CONSTRUCTION MUST COMPLY WITH EACH UTILITY'S STANDARDS AND SPECIFICATIONS AND NOT INTERFERE WITH TREE PLANTING SITES OR EXISTING TREES TO BE PRESERVED.
- 11. DOMESTIC WATER SERVICE TO BE PROVIDED BY DEKALB COUNTY DEPARTMENT OF WATERSHED MANAGEMENT.
- 12. ELECTRICAL & TELEPHONE LINES BURIED MINIMUM 36" & MAXIMUM 48" BELOW FINISHED GRADE. (CONTRACTOR TO COORDINATE ALL OTHER INSTALLATION WITH UTILITY CONTRACTOR)
- 13. ALL PARKING LIGHT POLES, TRANSFORMER, AND CONDUITS TO BE INSTALLED PER ELECTRICAL PLANS. ITEMS ARE SHOWN ON THIS SHEET FOR REFERENCE ONLY.
- 14. CONTRACTOR TO NOTIFY THE WATER AND SEWER CONSTRUCTION INSPECTOR AT 770-274-9024, 72 HOURS PRIOR TO THE START OF CONSTRUCTION.
- 15. AS BUILT WATER AND SEWER PLANS ARE REQUIRED BEFORE THE ISSUANCE OF THE CERTIFICATE OF OCCUPANCY.
- 16. CONTRACTOR TO NOTIFY THE UTILITY COORDINATOR AT 404–508–3622 FOR ROADS AND DRAINAGE INFORMATION.
- 17. CONTACT THE COUNTY FOR WORK WITHIN THE RIGHT-OF-WAY
- 18. PRIOR TO CONSTRUCTION OF ANY UTILITY FACILITIES WITHIN THE RIGHT-OF-WAY OF ANY COUNTY MAINTAINED ROADWAY A PERMIT MUST BE OBTAINED FROM THE UTILITY COORDINATOR
- 19. PRIOR TO CONSTRUCTION OF WATER MAINS AND SANITARY SEWER LINES FINAL DESIGN APPROVAL MUST BE OBTAINED FROM DEPARTMENT OF WATERSHED MANAGEMENT
- 20. NOTIFY WATER AND SEWER INSPECTOR AT 770-621-7212 PRIOR TO START OF CONSTRUCTION

### DeKalb County Notes:

- 1. ALL DESIGN AND CONSTRUCTION FOR WATER, SEWER, FIRE LANES, LIFT STATIONS AND BACKFLOW PREVENTION SHALL COMPLY WITH CITY OF STONECREST DEPARTMENT OF WATERSHED MANAGEMENT DESIGN STANDARDS 2009 EDITION. VERSION 1.0. ACTUAL FIELD CONDITIONS COULD DICTATE MORE STRINGENT REQUIREMENTS IF DEEMED NECESSARY BY THE CONSTRUCTION INSPECTOR.
- 2. TO PURCHASE A COPY OF THE DESIGN STANDARDS, PLEASE CALL (770)414-2383 OR (770) 621-7272.
- 3. DEVELOPER SHALL PROVIDE RECORD DRAWINGS "AS-BUILT PLANS" AND "FINAL PLATS" (IF APPLICABLE) IN HARD COPY AND ELECTRONIC (AUTOCAD OR MICROSTATION FORMAT), AS WELL AS RECORD ALL EASEMENTS THAT WILL BE DEDICATED TO DEKALB COUNTY IN THE COURT HOUSE, PRIOR TO APPROVAL OF AS BUILT PLANS.
- 4. FIRE LANES, F.O.G., BACKFLOW PREVENTION, AND LIFT STATION REQUIRE A SEPARATE REVIEW.
- 5. F.O.G COMPLIANCE (GREASE TRAP) REVIEW & APPROVAL CALL (404)687–7150 OR (404)687–7157.
- 6. PROJECTS INVOLVING CONSTRUCTION OF TOWN HOMES AND/OR CONDOMINIUMS ARE REQUIRED TO HAVE INDIVIDUAL METERS FOR EACH UNIT.
- 7. FIELD CHANGES DURING CONSTRUCTION MUST BE SUBMITTED FOR REVIEW & APPROVAL BY THE COUNTY ENGINEER, BEFORE CHANGES IMPLEMENTED.
- 8. FOR PROJECTS WITHIN CITIES, DEVELOPER SHALL PROVIDE A MAINTENANCE BOND TO DEKALB COUNTY FOR WATERSHED UTILITIES PRIOR TO APPROVAL OF AS BUILT PLANS.
- 9. CONTRACTOR MUST JET CLEAN & TV SANITARY SEWER LINES AFTER CONNECTIONS ARE MADE TO THE EXISTING SEWER TIE-IN POINTS. TRACER WIRE TO BE INSTALLED OVER NON-FERROUS/PVC PIPE.
- 10. CONTRACTOR MUST NOTIFY WATER & SEWER CONSTRUCTION INSPECTOR AT LEAST 72 HOURS PRIOR TO COMMENCING CONSTRUCTION ACTIVITIES.
- 11. POTABLE WATER MAINS SHALL MAINTAIN A TEN (10') FOOT HORIZONTAL AND EIGHTEEN (18") INCH VERTICAL CLEARANCE FROM NON-POTABLE PIPELINES.
- 12. IDENTIFY THE TREATMENT PLANT THAT SERVES THE PROPERTY.
- 13. SEWER LATERALS OUTSIDE THE BUILDING REQUIRE A SEPARATE PLUMBING PERMIT.
- 14. PRIOR TO CONSTRUCTION OF ANY UTILITY FACILITIES WITHIN THE RIGHT OF WAY OF ANY COUNTY MAINTAINED ROADWAY A PERMIT MUST BE OBTAINED FROM THE UTILITY COORDINATOR.
- 15. PRIOR TO CONSTRUCTION OF WATER MAINS AND SANITARY SEWER LINES FINAL DESIGN APPROVAL MUST BE OBTAINED FROM DEPARTMENT.
- 16. NOTIFY WATER AND SEWER INSPECTOR AT 770-621-7212 PRIOR TO START OF CONSTRUCTION.
- 17. CALL AT&T BEFORE STARTING CONSTRUCTION.CALL 811 FOR UTILITY LOCATION AT LEAST THREE DAYS BEFORE THE START OF THE WORK

![](_page_15_Figure_39.jpeg)

![](_page_15_Figure_40.jpeg)

![](_page_15_Figure_41.jpeg)

SEE SHEET T-2 FOR DEKALB COUNTY TREE NOTES												#352 20" PINE -		
Location	Tree #	Existin DBH 28	ng Tree Data T Species Oak	able % Impact	Status DESTROYED	Dekalb Units 8.6	Location Site	Tree #	Existin DBH 30	ng Tree Data Ta Species Hardwood	able % Impact 100%	Status DESTROYED	Dekalb Units 9.8	SAVED
Site Site Site	2 3 4	8 12 8	Pine Pine Hardwood	100% 100% 100%	DESTROYED DESTROYED DESTROYED	2.4 3.2 2.4	Site Site ROW	178 179 180	20 12 28	Maple Hardwood Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED DESTROYED	5.4 3.2 8.6	
Site Site Site	5 6 7	8 26 Unknown	Hardwood Hardwood Unknown	100% 100% 100%	DESTROYED DESTROYED DESTROYED	2.4 7.4 Unknown	Site Site Site	181 182 183	30 20 24	Oak Pine Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	9.8 5.4 6	-
Site Site Site	8 9 10	Unknown 12 30	Unknown Hardwood Poplar	100% 100% 100%	DESTROYED DESTROYED DESTROYED	Unknown 3.2 9.8	Site Site Site	184 185 186	30 30 24	Oak Pine Hardwood	100% 100% 100%	DESTROYED DESTROYED DESTROYED	9.8 9.8 6	
Site Site Site	11 12 13	20 15 15	Hardwood Poplar Poplar	100% 0% 0%	DESTROYED SAVED SAVED	5.4 4 4	Site Site Site	187 188 189	24 12 36	Pine Pine Hardwood	100% 100% 100%	DESTROYED DESTROYED DESTROYED	6 3.2 14.2	
Site Site Site	14 15 16	12 20 15	Hardwood Oak Oak	0% 11% 100%	SAVED SAVED DESTROYED	3.2 5.4 4	Site Site Site	190 191 192 193	24 24 8 30	Pine Pine Harwood	100% 100% 100%	DESTROYED DESTROYED DESTROYED	<u>6</u> 2.4	-
Site Site Site	17 18 19	24 20 Unknown	Oak Oak Unknown	18% 100% 100%	DESTROYED DESTROYED	5.4 Unknown	Site Site Site	193 194 195 196	30 30 18 18	Oak Oak Oak	100% 100% 100%	DESTROYED DESTROYED DESTROYED	9.8 4.8 4.8	
Site Site Site	20 21 22 23	24 30 24 15	Pine Oak Poplar	17% 100% 100%	DESTROYED DESTROYED	9.8 6	Site Site Site	197 198 199	36 24 24	Oak Oak Oak	100% 100% 100%	DESTROYED DESTROYED DESTROYED	14.2 6 6	
Site Site Site	23 24 25 26	8 8 12	Hardwood Pine	0% 0%	SAVED SAVED SAVED	2.4 2.4 3.2	Site Site Site	200 201 202	8 8 18	Oak Poplar Gum	100% 100% 100%	DESTROYED DESTROYED DESTROYED	2.4 2.4 4.8	
Site Site	20 27 28 20	12 12 12	Oak Oak Oak	0%	SAVED SAVED	3.2 3.2 3.2	Site Site Site	203 204 205	15 15 18	Poplar Pine Oak	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4 4 4.8	-
Site Site Site	29 30 31	15 12 9	Pine Pine Hardwood	0% 0% 0%	SAVED SAVED SAVED	4 3.2 2.4	Site Site Site	206 207 208	8 12 10	Maple Maple Poplar	100% 100% 100%	DESTROYED DESTROYED DESTROYED	2.4 3.2 3.2	- - -
Site Site Site	32 33 34	15 12 24	Oak Pine Oak	100% 0% 100%	DESTROYED SAVED DESTROYED	4 3.2 6	Site Site Site	209 210 211	Unknown Unknown 8	Unknown Unknown Oak	100% 100% 100%	DESTROYED DESTROYED DESTROYED	Unknown Unknown 2.4	
Site Site Site	35 36 37	12 8 Unknown	Pine Hardwood Unknown	0% 0% 100%	SAVED SAVED DESTROYED	3.2 2.4 Unknown	Site Site Site	212 213 214	8 8 12	Hardwood Hardwood Hardwood	100% 100% 100%	DESTROYED DESTROYED DESTROYED	2.4 2.4 3.2	
Site Site	38 39 40	15 10 9	Hardwood Hardwood Pine	0% 0% 0%	SAVED SAVED SAVED	3.2 2.4	Site Site Site	215 216 217	12 Unknown Unknown	Hardwood Unknown Unknown	100% 100% 100%	DESTROYED DESTROYED DESTROYED	3.2 Unknown Unknown	
Site Site Site	41 42 43 44	24 20 24	Oak Oak	36% 16% 100%	DESTROYED SAVED	6 5.4	Site Site Site	218 219 220 221	8 12 24 24	oak Poplar	100% 100% 100%	DESTROYED DESTROYED DESTROYED	2.4 3.2 6	-
Site Site Site	45 46 47	24 24 18	Oak Oak Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	6 4.8 4.8	Site Site Site	221 222 223 224	24 24 18	Oak Oak Pine	100 % 100 % 2 % 100 %	DESTROYED DESTROYED SAVED	6 4.8	
Site Site Site	48 49 50	24 18 30	Pine Pine Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	6 4.8 9.8	Site Site Site	225 226 227	8 15 10	Hardwood Hardwood	0%	SAVED SAVED SAVED	2.4 4 3.2	
Site Site Site	51 52 53	36 18 36	Oak Poplar Oak	100% 100% 100%	DESTROYED DESTROYED DESTROYED	14.2 4.8 14.2	Site Site Site	228 229 230	12 18 16	Pine Pine Gum	0% 0% 0%	SAVED SAVED SAVED	3.2 4.8 4.8	
Site Site Site	54 55 56	18 12 18	Poplar Oak Poplar	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4.8 3.2 4.8	Site Site Site	231 232 233	20 18 15	Pine Pine Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	5.4 4.8 4	
Site Site Site	57 58 59	15 15 19	Pine Pine Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4 4 5.4	Site Site Site	234 235 236	15 18 24	Pine Pine Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4 4.8 6	
Site Site Site	60 61 62	18 24 18	Pine Pine Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4.8 6 4.8	Site Site Site	237 238 239	18 12 18	Pine Pine <u>P</u> ine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4.8 3.2 4.8	
Site Site Site	63 64 65	10 18 15	Pine Poplar Poplar	100% 100% 100%	DESTROYED DESTROYED DESTROYED	3.2 4.8 4	Site Site Site	240 241 242	15 15 8	Pine Pine Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4 4 2.4	
Site Site Site	66 67 68	8 8 18	Poplar Oak Pine	100% 5% 100%	DESTROYED SAVED DESTROYED	2.4 2.4 4.8	Site Site Site	243 244 245	12 18 20	Pine Pine Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	3.2 4.8 5.4	
Site Site Site	69 70 71	18 18 8	Oak Oak Oak	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4.8 4.8 2.4	Site Site Site	246 247 248	24 15 15	Pine Pine Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	6 4 4	
Site Site Site	72 73 74	14 10 10	Oak Poplar Poplar	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4 3.2 3.2	Site Site Site	249 250 251	20 20 8	Pine Pine Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	5.4 5.4 2.4	
Site Site	75 76 77	10 24 12 24	Poplar Pine Poplar	100% 100% 100%	DESTROYED DESTROYED DESTROYED	3.2 6 3.2	Site Site Site	252 253 254 255	10 10 24	Pine Pine Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	3.2 3.2 6	CRZ IMPACT 11%
Site Site Site	70 79 80 81	18 12	Pine Poplar	100% 100% 0%	DESTROYED DESTROYED DESTROYED SAVED	4.8	Site Site Site	255 256 257 258	24 24 24 18	Pine Pine Pine Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	6 6 48	SAVED
Site Site Site	82 83 84	12 18 18 18	Pine Oak Poplar	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4.8 4.8 4.8	Site Site Site	259 260 261	24 18 20	Pine Pine Hardwood	100% 100% 100%	DESTROYED DESTROYED DESTROYED	6 4.8 5.4	#17 24 OAK - CRZ IMPACT 18%
Site Site Site	85 86 87	18 18 18 8	Pine Oak Poplar	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4.8 4.8 2.4	Site Site Site	262 263 264	15 24 8	Hardwood Hardwood Cypress	100% 100% 100%	DESTROYED DESTROYED DESTROYED DESTROYED	4 6 2.4	SAVED #20 24" PINE —
Site Site Site	88 89 90	18 18 12	Pine Pine Poplar	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4.8 4.8 3.2	Site Site Site	265 266 267	12 9 15	Öak Oak Hardwood	100% 100% 100%	DESTROYED DESTROYED DESTROYED	3.2 2.4 4	CRŻ IMPACT 17% SAVED
Site Site Site	91 92 93	24 10 18	Pine Oak Oak	8% 0% 0%	SAVED SAVED SAVED	6 3.2 4.8	Site Site Site	268 269 270	18 24 24	Pecan Pine Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4.8 6 6	#23 15" OAK ⁻
Site Site Site	94 95 96	18 18 24	Pine Oak Pine	100% 100% 100%	SAVED SAVED SAVED	5.4 5.4 6	Site Site Site	271 272 273	18 18 24	Pine Pine Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4.8 4.8 6	CRZ IMPACT 5%
Site Site Site	97 98 99	15 15 15	Oak Poplar Pine	100% 100% 7%	SAVED SAVED SAVED	4 4 4	Site Site Site	274 275 276	18 18 18	Pine Hardwood Pine	3% 0% 0%	SAVED SAVED DESTROYED	4.8 4.8 4.8	
Site Site Site	100 101 102	18 15 8	Pine Pine Dogwood	15% 100% 100%	SAVED DESTROYED DESTROYED	4.8 4 2.4	Site Site Site	277 278 279	15 15 18	Pine Pine Pine	0% 0% 0%	DESTROYED DESTROYED DESTROYED	4 4 4.8	
Site Site Site	103 104 105	18 15 18	Pine Pine Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4.8 4 4.8	Site Site Site	280 281 282 283	15 15 12	Pine Pine Pine	0% 2% 0%	DESTROYED SAVED DESTROYED	4 4 3.2	-
Site Site Site	106 107 108	15 12 Unknown	Pine Pine Unknown	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4 3.2 Unknown	Site Site Site	283 284 285 286	20 30 18 24	Pine Pine Pine Pine	23% 17% 0% 50%	SAVED SAVED SAVED	0.8 0.8 0.8	-
Site Site	109 110 111	18 15	Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4.8 4	Site Site	200 287 288 289	12 12 20	Pine Pine Pine	0%	DESTROYED DESTROYED DESTROYED	3.2 5.4 4	
Site Site Site	112 113 114 115	0 18 Unknown 18	Pine Pine Unknown Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4.8 Unknown	Site Site Site	200 290 291 292	24 15 26	Pine Pine Pine	0% 3% 0%	DESTROYED SAVED SAVED	6 4 7.4	
Site Site Site	116 117 118	18 18 8	Pine Pine Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4.0 4.8 2.4 2.4	Site Site Site	293 294 295	20 18 10	Pine Pine Pine	0% 0% 0%	SAVED SAVED SAVED	5.4 4.8 3.2	
Site Site Site	110 119 120 121	15 15 24	Pine Poplar Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4	Site Site Site	296 297 298	15 15 15	Pine Pine Pine	0% 13% 4%	SAVED SAVED SAVED	4 4 4 4	
Site Site Site	122 123 124	10 18 18	Magnolia Poplar Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	3.2 4.8 4.8	Site Site Site	299 300 301	20 36 18	Pine Gum Pine	0% 25% 0%	SAVED SAVED SAVED	5.4 14.2 4.8	#43 20" GUM -
Site Site Site	125 126 127	18 Unknown 12	Poplar Unknown Poplar	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4.8 Unknown 3.2	Site Site Site	302 303 304	24 8 24	Pine Hardwood Pine	0% 0% 0%	SAVED SAVED SAVED	6 2.4 6	SAVED
Site Site Site	128 129 130	12 Unknown 12	Poplar Unknown Poplar	100% 100% 100%	DESTROYED DESTROYED DESTROYED	3.2 Unknown 3.2	Site Boundary Site	305 306 307	14 15 10	Hardwood Gum Oak	0% 0% 0%	SAVED SAVED SAVED	4 4 3.2	
Site Site Site	131 132 133	12 15 12	Poplar Gum Poplar	100% 100% 100%	DESTROYED DESTROYED DESTROYED	3.2 4 3.2	Site Site Site	308 309 310	10 15 8	Oak Pine Oak	0% 0%	SAVED SAVED SAVED	3.2 4 2.4	
Site Site Site	134 135 136	18 18 12	Pine Pine Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4.8 4.8 3.2	Site Site Site	311 312 313	10 18 15 20	Oak Oak	0% 0% 0%	SAVED SAVED SAVED	3.2 4.8 4	- - -
Site Site Site	137 138 139	18 18 24	Pine Pine Pine	100% 100% 100%		4.8 4.8 6	Boundary Boundary Sito	314 315 316 317	18 20 21	Pine Oak Pino	0% 0% 0%	SAVED SAVED SAVED DESTROVED	9.0 4.8 5.4 6	
Site Site Site	140 141 142	24 18 12	Uak Oak Hardwood	100% 100% 100%	DESTROYED DESTROYED DESTROYED	6 4.8 3.2	Site Site Site	318 319 320	8 20 24	Oak Pine Pine	0% 0% 0%	DESTROYED DESTROYED DESTROYED	2.4 5.4 6	4 - -
Site Site Site	143 144 145 146	18 18 12 15	Oak Oak Poplar	100% 100% 100% 100%	DESTROYED DESTROYED DESTROYED	4.8 4.8 3.2	Site Site Site	321 322 323	24 12 24	Pine Gum Pine	0% 0% 3%	DESTROYED DESTROYED SAVED	6 3.2 6	
Site Site Site	140 147 148 1/10	15 15 15 10	Gum Gum Poplar	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4 4 4 30	Site Site Site	324 325 326	12 15 8	Gum Gum Gum	0%	DESTROYED SAVED SAVED	3.2 4 2.4	
Site Site Site	150 151 152	10 8 12 8	Poplar Poplar Hardwood	100% 100% 100%	DESTROYED DESTROYED DESTROYED	3.2 2.4 3.2 2.4	Site Site Boundary	327 328 329	18 12 12	Oak Pine Pine	14% 15% 0%	SAVED SAVED SAVED	4.8 3.2 3.2	
Site Site Site	153 154 155	12 9 12	Hardwood Hardwood Poplar	100% 100% 100%	DESTROYED DESTROYED DESTROYED	3.2 2.4 3.2	Boundary Site Boundary	330 331 332	12 18 12	Pine Oak Pine	0% 22% 0%	SAVED SAVED SAVED	3.2 4.8 3.2	
Site Site Site	156 157 158	8	Pine Poplar Poplar	100% 100% 100%	DESTROYED DESTROYED DESTROYED	2.4 2.4 2.4 2.4	Site Boundary Site	333 334 335	24 24 28	Pine Pine Oak	94% 0% 100%	DESTROYED SAVED DESTROYED	6 6 8.6	
Site Site Site	159 160 161	15 24 24	Hardwood Pine Oak	100% 100% 100%	DESTROYED DESTROYED DESTROYED	4 6 6	Site Site Site	336 337 338	36 8 10	Oak Poplar Hardwood	100% 0% 11%	DESTROYED SAVED SAVED	14.2 2.4 3.2	
Site Site Site	162 163 164	30 24 10	Hardwood Pine Poplar	100% 100% 100%	DESTROYED DESTROYED DESTROYED	9.8 6 3.2	Site Site Site	339 340 341	8 12 12	Hardwood Hardwood Hardwood	11% 15% 65%	SAVED SAVED DESTROYED	2.4 3.2 3.2	
Site Site Site	165 166 167	24 8 12	Pine Poplar Poplar	100% 100% 100%	DESTROYED DESTROYED DESTROYED	6 2.4 3.2	Site Site Site	342 343 344	12 12 10	Poplar Poplar Oak	0% 0% 0%	SAVED SAVED SAVED	3.2 3.2 3.2	
Site Site Site	168 169 170	9 8 18	Poplar Poplar Harwood	100% 100% 100%	DESTROYED DESTROYED DESTROYED	2.4 2.4 4.8	Site Site Site	345 346 347 249	10 12 30	Uak Oak Maple	U% 0% 75%	SAVED SAVED DESTROYED	3.2 3.2 9.8	ULSINUIEU IKEES
Site Site Site	171 172 173	24 30 24	Harwood Oak Pine	100% 100% 100%	DESTROYED DESTROYED DESTROYED	6 9.8 6	Site Site Site	340 349 350 351	18 28 15	Maple Oak Maple	0% 0% 0%	SAVED SAVED SAVED	9.0 4.8 8.6 4	-
Site Site Site	1/4 175 176	20 20 15	Pine Oak Hardwood	100% 100% 100%	DESTROYED DESTROYED DESTROYED	5.4 5.4 4	Boundary	352	20	Pine	16%	SAVED	5.4	]
													P	#67 8" OAK CRZ IMPACT 5% SAVED
													r N	IANAGEMENT AREA
												N	LIMIT	s of disturbance D D D
							0		30'	6	60'			
							C	SCALE	: 1" = 3	30'	-			

![](_page_16_Figure_1.jpeg)

### DEKALB TREE NOTES

- 1. NO ONE SHALL ENCROACH, PLACE SOLVEMENTS, BUILDING, MACHINERY, BUILDING DEBRIS OR ANY OTHER MATERIAL WITHIN 6' OUTSIDE THEE PERIPHERY OF THE CRZ OR WITHIN ANY TREE SAVE AREA, TRANSITIONAL BUFFER ZONE, STREAM BUFFER, OR STATE BUFFER ZONE.
- 2. ALL TREE FENCE AND OTHER TREE PROTECTION DEVICES MUST REMAIN IN FUNCTIONING CONDITION UNTIL COMPLETION OF THE PROJECT OR UNTIL THE CO IS ISSUED AND FINAL LANDSCAPING IS INSTALLED.
- 3. A TREE THAT IS DESIGNATED TO BE SAVED, BUT IS DAMAGED DURING CONSTRUCTION, <u>SHALL</u> BE REPLACED WITH 4" CALIPER TREES EQUAL TO THE UNIT VALUE OF THE TREE REMOVED. ANY SPECIMEN TREE DAMAGED SHALL BE REPLACED WITH 4" CALIPER TREES EQUAL TO 1.5 TIMES THE DBH OF THE DAMAGED SPECIMEN.
- 4. ALL PROTECTION AREAS TO BE PROTECTED FROM SEDIMENTATION.
- 5. ALL TREE PROTECTION DEVICES, INCLUDING CRITICAL ROOT ZONE (CRZ) PROTECTION, TO BE INSTALLED PRIOR TO THE START OF THE LAND DISTURBANCE, AND MAINTAINED UNTIL FINAL LANDSCAPING.
- 6. ALL TREE PROTECTION FENCING TO BE INSPECTED DAILY, AND REPAIRED OR REPLACED AS NEEDED.
- 7. NO PARKING, STORAGE OR OTHER CONSTRUCTION ACTIVITIES ARE TO OCCUR WITHIN TREE PROTECTION AREAS(CRZ).
- 8. ALL REQUIRED VEGETATION MUST BE MAINTAINED FOR TWO GROWING SEASONS AFTER THE DATE OF FINAL INSPECTION.
- 9. <u>THE PROTECTION SIGNS</u> ARE TO BE PLACED AT LEAST EVERY 50' ALONG THE LENGTH OF THE TREE PROTECTION FENCE. THE SIGNS SHOULD BE IN LANGUAGE SO THAT ALL WORKERS ON SITE ARE ABLE TO UNDERSTAND.
- 10. ALL REQUIRED VEGETATION MUST BE MAINTAINED FOR TWO GROWING SEASONS AFTER THE DATE OF FINAL INSPECTION

![](_page_17_Figure_11.jpeg)

4. DO NOT STORE OR STACK MATERIALS, EQUIPMENT, OR VEHICLES WITHIN FENCED AREA. UNDER NO CIRCUMSTANCES SHOULD THE FENCE BE TRENCHED IN.
5. FENCE SHALL BE ORANGE VINYL "SNOW FENCE" 4' HIGH MINIMUM.

TREE LEGEND:	TOTAL INCHES	LOCATION
- REPLACEMENT TREE: 4" RED MAPLE, 17 QTY	68"	RIGHT OF WAY MAPLE ROAD
- REPLACEMENT TREE: 4" RIVER BIRCH, 17 QTY	68"	RIGHT OF WAY MAPLE RIDGE
- REPLACEMENT TREE: 4" RED MAPLE, 15 QTY	60"	RIGHT OF WAY MAPLE RIDGE
E REPLACEMENT TREE: 4" EUROPEAN HORNBEAM 15 QTY	60"	RIGHT OF WAY MAPLE RIDGE
- REPLACEMENT TREE: 4" AMERICAN ELM, 15 QTY	60"	RIGHT OF WAY MAPLE RIDGE
O – REPLACEMENT TREE: 4" WHITE OAK, 17 QTY	68"	RIGHT OF WAY MAPLE RIDGE
TOTAL PLANTED INCHES ONSITE FOR DENSITY COMPLIANCE:	384"	

ONSITE SPECIMEN TREES -			
	DESTROYED		
TREE NO.	TREE SIZE (INCH)	SPECIE	
10	30	Poplar	
21	30	Oak	
50	30	Pine	
51	36	Oak	
53	36	Oak	
162	30	Hardwood	
172	30	Oak	
177	30	Hardwood	
181	30	Oak	
184	30	Oak	
185	30	Pine	
189	36	Hardwood	
193	30	Oak	
194	30	Oak	
197	36	Oak	
336	36	Oak	
347	30	Maple	
17	540		

### TREE SUMMARY:

TOTAL ONSITE TREES	=	342
TOTAL ONSITE INCHES	=	5,735 INCHES
TREES DESTROYED	=	254
INCHES DESTROYED	=	4,367 INCHES
TREES TO REMAIN	=	88
INCHES TO REMAIN	=	1,368 INCHES

REQUIRED TREES TO REMAIN = 120"/ ACRE x 8.40 ACRES = 1,008 INCHES

SURPLUS INCHES = 1,368" - 1,008" = 360 INCHES

SPECIMEN TREE INCHES TO REPLACE = 540 x 1.5 = 810 INCHES

REPLACEMENT TREES = 384 INCHES (SEE ABOVE)

OWED INCHES = 810 - 360 - 384 = 66 INCHES

COST OWED = \$100/INCH x 66 INCHES = \$6,600

LIMITS OF DISTURBANCE ----- D ---- D ----- D -----

![](_page_17_Figure_24.jpeg)

![](_page_18_Picture_0.jpeg)

Government Services Center 178 Sams Street Decatur, GA 30030 www.dekalbcountyga.gov/planning 404-371-2155 (o); 404-371-4556 (f)

**DEPARTMENT OF PLANNING & SUSTAINABILITY** 

Interim Director Cedric Hudson

Chief Executive Officer Michael Thurmond

### **SKETCH PLAT APPLICATION**

Application Fee: \$300 plus \$10 per lot created. Only digital copies will be accepted. Contact <u>plansustain@dekalbcountyga.gov</u> for any questions regarding submittal requirements.

### Project Name <u>Maplewood Drive Subdivision</u>

Project Address	ct Address <u>4127-4173 Maplewood Drive Decatur, GA 30035</u>			
Proposed Use	Construction of 31 single family home development			
Date(s) of Pre-Application	Meeting(s) November 11	, 2023		
Site Acreage <u>8.40</u> Ac Public Sewer (Y/N?) <u>Y</u>	re(s) No. of Lots <u>33</u> Septic (Y/N?) <u>N</u>	No. of Units <u>31</u>		
Property Owner Maplewood Mareis. LLC Phone 404-775-4687			Phone 404-775-4687	
Address <u>4127-4173 Ma</u> g	plewood Drive			
City <u>Decatur</u>		State <u>GA</u>	Zip <u>30035</u>	
Agent Authorized to Receive All Notifications Emily Sidner				
Address 211 Frasier St	SE		Phone <u>678-324-8410</u>	
City <u>Marietta</u>		State <u>GA</u>	Zip <u>30060</u>	
Developer Maplewood Mareis, LLC. Phone 404-775-4687			Phone <u>404-775-4687</u>	
Address <u>4127-4173 Ma</u>	plewood Drive			
City <u>Decatur</u>		State GA	Zip <u>30035</u>	
Engineer/Architect Crescent View			_ Phone <u>678-324-8410</u>	
Engineering, LLC				
Address 211 Frasier St	<u>. SE</u>			
City <u>Marietta</u>		State <u>GA</u>	Zip <u>30060</u>	
Applicant_Emily Sidne	<u>er</u>			
Company Name Cresce	ent View Engineering, L	.LC.	Phone <u>678-324-8410</u>	

Address 211 Frasier St. SE

City <u>Marietta</u>

State <u>GA</u>

Zip <u>30060</u>

![](_page_21_Picture_0.jpeg)

Government Services Center 178 Sams Street Decatur, GA 30030 <u>www.dekalbcountyga.gov/planning</u> 404-371-2155 (o); 404-371-4556 (f)

Chief Executive Officer Michael Thurmond

### DEPARTMENT OF PLANNING & SUSTAINABILITY

Interim Director Cedric Hudson

### SKETCH PLAT APPLICATION AUTHORIZATION

Only digital copies will be accepted.

151500005 00000000 1515000007 1515000051 1515000000 1515000000

Contact plansustain@dekalbcountyga.gov for any questions regarding submittal requirements.

To whom it may concern:

I/We, MAPLEWOOD MAREIS, LLC.

being owner(s) of the property described below or attached, hereby delegate authority to:

CRESCENT VIEW ENGINEERING, LLC.

to file an application in my/our behalf.

st of all Parcel ID Number(s):			
1515802005, 2626902006	15158802007, 1515802051, 1515802008, 1515802009		
	NIN DEKER		
	CO CONTRACTOR OF CONTRACTOR		
(46)	NO7 NO7	Allen	
Notary Public	A A A A A A A A A A A A A A A A A A A	Owner	
Notary Public	NOSXOUNT	Owner	
Notary Public		Owner	
Notary Public		Owner	
Notary Public		Owner	

All applications for Sketch Plats must be submitted by the owner of the affected property or the authorized agent of the owner. Such authorization shall be notarized and attached to the application.

D
DeKalb County

Government Services Center 178 Sams Street Decatur, GA 30030 www.dekalbcountyga.gov/planning 404-371-2155 (o); 404-371-4556 (f)

Chief Executive Officer Michael Thurmond **DEPARTMENT OF PLANNING & SUSTAINABILITY** 

Interim Director Cedric Hudson

### CERTIFICATE OF CONFORMITY

Only digital copies will be accepted.

Contact plansustain@dekalbcountyga.gov for any questions regarding submittal requirements.

_{I,} GEORGE H. BALTZ III

, the engineer/sur	vevor
--------------------	-------

for the subdivision known as 4127-4173 MAPLEWOOD DRIVE located in Land Lot 158 ______of the 15 ______District, hereby

certify that no lots platted within the subdivision are non-conforming or will result in

any non-conforming lots.

Signature

<b>GEORGE H</b>	BALTZ III
-----------------	-----------

Name (Please Print)

### 211 FRASIER ST. SE

Address

MAR	ET	TA
	1000	

GA

City

State

Zip

30060

![](_page_23_Picture_0.jpeg)

Government Services Center 178 Sams Street Decatur, GA 30030 www.dekalbcountyga.gov/planning 404-371-2155 (o); 404-371-4556 (f)

**DEPARTMENT OF PLANNING & SUSTAINABILITY** 

Chief Executive Officer Michael Thurmond Interim Director Cedric Hudson

DATE: December 8, 2023

### To Whom It May Concern:

This is to confirm that on November 14, 2023, the DeKalb County Board of Commissioners approved the following application:

Z-23-1246544 2023-0874 15-158-02-005, 006, 007, 051, 008 & 009 4127, 4139, 4147, 4149, 4163, & 4173 MAPLEWOOD DRIVE DECATUR, GEORGIA 30035 Commission District 03 Super District 07

Application of Alex Ciuca c/o Battle Law, P.C. to rezone properties from R-75 (Residential Medium Lot- 75) zoning district to RSM (Small Lot Residential Mix) zoning district to allow for the construction of single-family, detached homes.

The application was approved on November 14, 2023, with the following conditions:

- 1. No more than thirty-one (31) single-family, detached dwellings shall be constructed in general conformance to the site plan dated 10/18/2023.
- 2. Approval of this rezoning application by the Board of Commissioners has no bearing on the requirements for other regulatory approvals under the authority of the Planning Commission, the Zoning Board of Appeals, or other entity whose decision should be based on the merits of the application under review by each entity.
- 3. A ten-foot no-access easement and a 20-foot-wide landscape strip shall be provided as shown on the site plan, in combination with a six-foot-high decorative fence, or a five-foot-high landscaped berm, to screen the rear view of houses from Maplewood Drive.
- 4. A minimum of 20 percent open space shall be provided. Fifty (50) percent of the provided open space shall be enhanced open space as shown on the site plan. A minimum distance of 30 feet shall be provided between the rear lot lines of Lots 9-13 and the southern property line of the overall development site. Nature trails shall be provided as shown.
- 5. Building elevations shall be in general conformance with the designs included with the application; building materials shall consist of brick, stucco, and/or cementitious siding.

![](_page_24_Figure_0.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_27_Picture_0.jpeg)

![](_page_28_Picture_0.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_31_Picture_0.jpeg)

![](_page_32_Picture_0.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_33_Picture_1.jpeg)

SKETCH

CONTACT US 404.371.2155 www.dekalbcountyga gov/planning-andsustainability/planning

![](_page_33_Picture_3.jpeg)

# A change is being proposed for this site.

# Case Number: N1. P-Plat #1246866 Existing Zoning: RSM

## Site Location: NYN ROM A MEES COMPONING ( (REKNI REES) 4127, 4139, 4147, 4149, 4163 & 4173 Maplewood Dr

Purpose: Request to subdivide approximately 8.4 acres to construct up to 31 single-family detached dwellings.

**Planning Commission Sketch Plat Meeting** Date: 12/11/2024 Time: 6:00pm Zoom ID: https://dekalbcountyga.zoom.us/j/86330344636 Phone: (888)-270-9936 Code: 691303